
1. Imagination/Inspiration

At least in some circles, math and art are seen as disciplines which share a common claim

to a certain level of abstract thought - more or less divorced (at least theoretically) from empirical

evidence they are expressions of the ‘pure’ human mind. As such, notions of imagination and

inspiration are often associated with the synthesis of works of the respective disciplines. Although

it may be true that both math and art enjoy some distance from the ‘mundane’ considerations

of day-to-day life (relative to other disciplines), I would say that much of what constitutes a

successful mathematician/artist is maybe more the ability to channel this energy into consistent

production. I’m often amazed (intimidated?) by the number of papers, conferences, etc. that

the most successful mathematicians are able to contribute to - these are people who are able to

takes their thoughts and convert them into a paper/presence in a very efficient manner. This is

not to say that the quality of the idea is distilled in any way (this is clearly not the case), but

more that these people are able to overcome a somewhat natural aversion to the ‘compromise’ of

making the thoughts concrete. We often feel inclined to differentiate between the ‘pure’ thoughts

of a mathematician/artist and the actual instantiation/production of them (papers, painting, etc.)

but I feel like it’s a blurry boundary and really these are often one in the same.

2. Process/Rules

Perhaps a common conception is that mathematicians have a certain list of ‘obvious’ (and

static) axioms/definitions that we then bump into each other to produce new results. Although this

is to some extent an accurate depiction of the process of math research, things are of course more

sophisticated. As mathematicians, we’ve all heard some form of the old adage that we ‘know what

the theorems should be, we just need the right definitions’. The sentiment is somewhat tongue-in-

cheek, but I do think it describes the process of math research more accurately than those outside of

math might otherwise imagine. Most of the ‘good’ definitions in math have evolved (and continue

to evolve) over many years and have involved the best minds in history - notions of manifolds,

matroids, and schemes come to mind, and even more ‘down to earth’ concepts such as groups and

topological spaces are good examples. This is perhaps analogous to the (misconceptions of the)

processes involved in art practice: it is not so much that artists have a set of tools and techniques

from which to produce their works of art, but rather they seek to define these techniques in a way

that they and others can then incorporate into their works.

Of course once the definitions are established one does need to deduce some things from

them (the conjectures that should be true actually do need to be proved) and this process does

account for a good chunk of the research process. Zack mentioned the use of metaphor is his

research process - my impression is that he’s referring to the use of language outside mathematics

to describe some more familiar aspects of e.g. an involved alegbro-geometric concept. This is

of course a powerful way to understand and gain intuition into a certain problem. But I think

an equally relevant use of metaphor in math research comes in the form of metaphor *within*

mathematics - that is, using concepts and constructions from one discipline (within math) and
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applying them to other areas where they apparently have no place being. The surprising utility (in

some cases) of these metaphors account for some of the most important and ‘deepest’ mathematical

research.

One of the most interesting (for me) themes coming out of our post presentation discussions

was the notion of the local vs. global aspect of process in both math and art creation. I believe it

was Eric, who, in his description of his artistic process, mentioned something to the effect that each

step in making his paintings was governed by some rule, a rule that he either invented for himself

or else by intuition presented itself to him. I think this ‘following your nose’ process according to

local rules is a good metaphor for certain kinds of mathematical research. When one goes about

proving a statement, we often have a certain ‘checklist’ of tools/arguments that one applies at a

certain step - although the global statement (e.g. the conclusion of the theorem) is difficult to see,

the local steps are there. In both math and art we have (through experience) grown accustomed to

these local steps/procedures that govern our process on the small scale; these rules guide our hand

and provide us with intuition. This intuition is continually enhanced (the checklist gets longer)

as we make small deviations from previous efforts. In Lun-Yi’s discussion of his paintings of color

fields, he mentioned the consuming/frustrating process of continually changing patches of colors to

the point where he began to anticipate the effect of making a particular small change. These were

perhaps the local rules that he was learning that began to guide his hand in subsequent efforts.

Although he might not be paintings color fields these days, I would say that these lessons still do

inform his mark making.

Although the local rules are somewhat automatic and part of the language, the most effective

global efforts in math/art involve steps that are truly novel and outside the expected checklist.

The proof of a theorem often involves a ‘key lemma’, something that one might not try if he/she

were presented with the task. The complete proof might involve a (perhaps complicated) sequence

of expected local moves/rules that revolve around this insight. The proofs that are considered

most interesting are often the ones that involve at least some sort of departure from the expected

sequence of local steps.

3. Notation

As Zack mentioned, there is a strong emphasis in mathematics on good notation. Some of

the best talks and papers that we come across are those that use the language in a efficient and

streamlined manner. Zack pointed out the learned skill of literally writing down funny symbols

like ξ, but also mentioned the need for notating/representing a concept in a meaningful way. The

quest for good notation and the ‘right’ definitions has in some sense led to the creation of entire

branches of mathematics. Perhaps the archetypal example is the branch of mathematics known

as category theory (the granddaddy of the short exact sequence?), which some would say has no

theorems at all, i.e. just a bunch of definitions and notation. But category theory has developed

hand in hand with some of the most powerful mathematics of the contemporary era, and today

it is a language used by mathematicians in diverse fields as the ‘right way’ to talk about various
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constructions, etc. Although it’s still common to disregard the work of a mathematician by saying

it’s ‘just notation’ or ‘all definitions’, I would say it’s often a term of endearment in a strange way.

Perhaps this is analogous to the experience of an artist who has to negotiate the space

between that of a ‘technician’ and that of a true ‘artist’. I would guess that very few of the

historically successful artists lack what one would consider technical skill, although again a common

way to dismiss a work of art is to describe it as technically strong but ‘lacking in concept’; here

one encounters the often controversial distinction between the ‘artist’ and the ‘craftsperson’. This

was especially the case in the mid to late 20th century as the emphasis in art moved away from

that of a mastery of technique to that of conceptual art (here we see works of art being physically

produced not by the artist him/herself but by a team of craftspeople hired to carry out the vision

of the ’artist’). I would say that even this distinction seemed to fade away in the late 20th century

with the advent of post-modern (and post-PM) movements, where we see a certain reclamation of

the aesthetics of pure technical skill (is that true?)

4. Visualization/Representation

One thing that math and art (and other fields) have in common is that in both cases we

are using a sort of language to represent abstract concepts In mathematics it is typical that one

works with an object/concept that has a rather complicated definition - it is the long list of

conditions that one uses to formally prove something about it. However, often the most effective

way to communicate the ‘meaning’ of the concept is to provide a one or two illustrative examples

(often the ones that motivated the definition). If we all agree that these examples are somehow

captured/unified by the axioms involved, then it is a object that gains some value.

The most common question that came up in the post presentation dialogues (and elsewhere)

was some form of ‘how do mathematicians ‘visualize’ higher dimensions?’ For the mathematicians

I don’t think this question really makes sense because in the cases where one deals with higher

dimensions the concept is well-defined (usually according to some formalized notion of ‘degree of

freedom’). Depending on your definition, you formally work in higher dimensions just as you would

in 2 or 3; of course geometric intuition comes into play in certain circumstances, but no one is

really ‘seeing’ R
12. Perhaps the better question is ’how do mathematicians define dimension’?

In my effort to address the original question (I was anticipating it), I tried to present the

concept of a polytope in a way that might give some insight into these ‘higher dimensional’ things.

One the one hand a polytope is a space that is (by definition) the intersection of a bunch of

half spaces in high dimensional space (OK, hard to see), but also contains the extra information

regarding the way points, edges, faces, etc. are related to each other. This built-in (and often

recursive) structure of the faces gives you a way to see what’s going on - the example I used was

the 4 dimensional cube that can be ‘unfolded’ in the same way one unfolds the (usual) 3-cube into

a flat collection of squares glued in a certain way. (Polytopes can also be equivalently described as

the convex hull of finitely many points but I would argue this is even ‘harder’ to see).
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5. Parameters

As Lun-Yi mentioned, the notion of a parameter can mean many things depending on context

(vernacular vs technical), but even within mathematics I would say its meaning is somewhat

blurred. It’s true that folks often use the word ’parameter’ interchangeably with ’variable’, i.e. the

things you stick into a formula/function (some would argue that the parameters stay fixed while

the variables are the ones that change, so that the parameters are actually part of the function’s

definition). But I think the more interesting notion of a ’parameterization’ involves the idea of

taking a collection of things (points of a curve, curves themselves with a particular property,

triangulations of a polygon, etc.) and ascribing/mapping to them in a bijective way the points

of some other object/space. The idea is then that we can work with this meta-object to reveal

something interesting about the original collection that we had in mind.

Here is a simple example: let’s take the points of a circle in the x-y plane with radius 1.

Maybe the first way we learn to describe this algebraically is with the equation x2 + y2 = 1. OK,

but now I want to think about this circle as a certain piece of (say) string that has been placed on

the plane tracing the circular shape, ie. I want to think about the points on the circle and coming

from points of a line segment (string). We do this by ‘parameterizing’ the circular according to

(cos t, sin t) with 0 ≤ t < 2π. What we mean by this is that we take a piece of (straight) string

of length 2π and place it on the plane according to: the piece at position t should go at the

point (cos t, sin t) in the plane. Although a simple example, I would say that this notion is very

important/powerful in many branches of math. The classification of curves into rational vs. elliptic

and higher genus runs along these lines.

More sophisticated examples of parameterization involve the notion of taking a collection

of objects in a certain category and ascribing to that collection the properties that the objects

themselves enjoy - the ultimate example perhaps being the moduli spaces that Sándor addressed.

In my presentation I tried to describe how one can similarly take a collection of ‘bracketings’ of a

string of letters and think of them as the points of a polytope. To make this more of a moduli space

type picture, one can generalize this and give the collection of (certain) maps between polytopes P

and Q the structure of a polytope. In both cases, the idea is that we are given a discrete collection

of objects that have certain relationships between, and we are able to ascribe to them the structure

of a geometric object (a polytope) in a way that the face structure of the polytope encodes that

given relationship.


